REVIEWS

RESEARCH IN THE FIELD OF PHENOMENOLOGICAL RHEOLOGY

M. P. Volarovich and N. I, Malinin UDC 532.135

Rheology has been extensively developed in the past decades — this is the study of the deformation and
flow of materials. Numerous problems of rheology are presently being published in the periodical litera-
ture of the USSR and abroad. Certain problems in the rheology of disperse and-high-molecular systems
have been generalized in previous surveys > from which we see that Soviet scientists have contributed ex-
tensively to the fundamentals and development of rheology. We know that Shvedov founded the rheology of
disperse and high-molecular systems in 1889 when he observed the relaxation of stresses in a gelatin sol
and formulated the equation for viscoplastic flow.t

Numerous monographs and collections appeared abroad after the Second World War, devoted to the vari -
ous branches of rheology. Some of these have been translated in Russian and published in USSR. In this
survey we briefly outline some of the results achieved by foreign researchers in the field of phenomeno-
logical rheology, which have been published in the cited publications.

The term "rheology” was introduced at the suggestion of the American scientist E, Bingham at the
Third International Symposium on the Theory of Plasticity (April, 1929). Even at that time it was felt neces-
sary — within the general system of sciences —to separate that branch of knowledge devoted to problems of
deformation and flow in a variety of materials which people encounter in their practical and scientific ac-
tivity, i.e., manufacture, processing, and application. More detailed information as to the origin of the
term "rheology," on the history of the establishment of the first society of rheology, on research into the
processes of flow in materials — from the first efforts of Amenemhet (the inventor of the water clock in
ancient Egypt) to the present day — can be found in the books of Scott-Blair [1]. These publications also
contain a survey of the earliest research into the rheology of various materials, primarily those projects
completed prior to the Second World War,

The Society of Rheology was organized in the USA in 1929, and its chairman for a long time was E.
Bingham. For a number of years the society published the Journal of Rheology, and it regularly puts out
The Rheology Leaflet, later changed to the Rheology Bulletin, which publishes abstracts in the field of rheo-
logy. At the initiative of Scott-Blair, the British Rheologist's Club was organized in England in 1940, and
Professor G.I. Taylor served as its first chairman, This organization, also engaged in the regular publica-
tion of rheology bulletins, was subsequently renamed the British Society of Rheology. In conjunction with
the English National Engineering Laboratory, this society publishes indexes of papers in the field of rheology
in England (see, for example, [2]). A Rheology Group has been part of the National Science Research Center
in France for about 10 years, and it publishes the special rheology journal Cahier du Groupe Francais
d'Etudes de Rheologie. The Transactions of the Society of Rheology have been published in the USA since
1957, The journal Rheologica Acta has been published in the Federal Republic of Germany since 1958, i.e,
after the Third International Rheological Congress.

Rheology$ presently occupies a definite position in the general system of sciences, at the juncture of
physics, chemistry, mechanics, and technology. Rheology owes its position at this juncture of the sciences

*M. P. Volarovich, Kolloid. Zh., 16, No. 3 (1954); M. P. Volarovich, L. . Lishtvan, and V. M. Naumovich, Inzh.-
Fiz. Zh., 5, No. 2 (1962); M. P. Volarovich and N. 1. Malinin, Inzh.-Fiz. Zh., 10, No. 6 (1966).

t See the article by M. P Volarovich and S. M. Levi [Kolloid. Zh. 18, No. 2 (1956)], devoted to the memory of
F. N. Shvedov.

1 The definition of the word "rheology" can be found in an article by one of the authors of this paper in the
Physics Encyclopedic Dictionary, Vol.4 (1965), p. 435,
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to the fact that its limits have not yet been completely defined. The range of problems in rheology is quite
broad and it deals with the problems of flow of deformation in the most varied of materials, beginning with
Newtonian fluids and ending with the ideally elastic Hooke body. But, for example, the hydrodynamics of
viscous fluids, which treat a liquid as a continuous medium, is also concerned with the flows of Newtonian
fluids. The corresponding solutions of these problems are of interest both from the standpoint of rheology
and hydromechanics, and it is impossible to establish a clear demarcation between rheology and hydro-
dynamics. There is also no clear boundary between rheology, on the one hand, and the theories of elasticity,
plasticity, and creep, on the other hand. Unlike the cited sciences, hydrodynamics, and the theories of
elasticity, plasticity, and creep, rheology devotes more attention to problems of interrelationships between
the processes of deformation and flow and the structural features of various materials.

On the other hand, rheology is closely associated with that new branch of science — physicochemical
mechanics — founded and developed in the works of Academician Rebinder and his school.* Physicochemical
mechanics covers a broad range of subjects, in particular, the problems of structure formation in various
materials in connection with the colloidal processes and chemical reactions taking place within them, makes
extensive use of the methods of rheology and rheological apparatus.t

Contemporary rheology can be divided into three basic sections: phenomenological rheology, experi-
mental rheology, and structural rheclogy. Structural rheology is occasionally referred to as microrheology;
it establishes a relationship between the rheological properties and the structure of a material. A some-
what isolated phenomenon is the development of biorheology, which deals with research into the processes
of flow in blood, protoplasm, synovial and hormonal fluids, etc., as well as the deformation of plant and
animal tissues as this relates to the vital aspects of an organism. Biorheoclogy — a branch of biophysics
— employs essentially those methods as phenomenological, experimental, and structural rheology; however,
the relationship between the properties of deformation and flow in biological tissues and fluids and the
physiological processes of plant and animals governs the unique nature of this branch of science, situated
at the juncture of mechanics, physies, chemistry, and biology.

This survey is devoted to problems of phenomenological macrorheology. Phenomenological rheology
establishes the relationship between the stresses acting on a body, these stresses having been brought about
by strains and their changes with time. The material being investigated is usually treated as a continuous
medium which permanently occupies the space in which it is found. Examination of the problems of defor-
mation and flow in products and structures of materials described by various phenomenological equations
serves also as the subject matter of phenomenological rheology. The corresponding equations are frequent-
ly based for given materials on experimental research performed with the aid of a variety of rheology in-
strumentation. However, the problems of calculating the processes of deformation and flow are generally
resolved in rheology by mathematical methods analogous to those of the theories of elasticity, plasticity,
and hydrodynamics, This branch of rheology may therefore be referred to as theoretical, or mathematical,
rheology.

In connection with the above, of fundamental importance in rheology are the above-cited characteris-
tics of the stressed—strained state of matter, i.e., stresses, strains, and their derivatives. In the general
case these may be derivatives of n-th order with respect to time, wheren =0,1,2, ..., or it maybe a
fraction.i The definition of stress, as a tensor quantity, provided by Voigt** in the last century, has as yet
undergone no change and exhibits no shortcomings which would serve as a basis for replacement, correction,
or generalization of this macroscopic characteristic. As regards deformation, the Cauchy definition of de-
formation &ij in the form

(us,;+ us,0) (1

i

1
(uy is the displacement of the point in the direction of the x; coordinate line, with the comma denoting dif~
ferent1at10n with respect to the corresponding space coordinate, so that uj j = ouj /BxJ) is applicable only

* P, A.Rebinder, [zv. Akad.Nauk, SSSR,Otd.Khim. Nauk, No, 11 (1957).

+See, for example, Physicochemical Mechanics of Soils, Clays, and Structural Materials [in Russian], Izd.
Fan Uzbekskoi SSR, Tashkent (1966); Problems of Physicochemical Mechanics of Fibrous and Porous Dis-
perse Structures and Materials [in Russian], Zinatne, Riga (1967).

tIn connection with the use of fractional differentiation in the Liouville sense for the description of relaxa-
tion properties in high polymers, see: A. N. Gerasimov, Prikl. Matem.i Mekhan., 12, No.3 (1948); G. L.,
Slonimskii, Dokl. Akad. Nauk SSSR, 140, No.2 (1961). -

*+D. I. Kutilin, The Theory of Finite Deformations [in Russian], OGIZ Gostekhizdat (1947), p. 10.
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to small deformations substantially smaller than unity. There is no proof that definition (1) is useful for
finite (farge) deformations of such materials, for example, as rubber whose elastic strains may reach a
magnitude of 800-1000%. Reiner [3, 4] notes that any monotonically increasing function of the displacement
may be treated as a measure of finite deformation, if it degenerates into the first part of formula (1) in the
case of infinitely small deformations. Reiner provides absolutely no basis for this contention. In particular,
he notes that even the Cauchy measure, in principle, can be used to determine finite deformations, although
it exhibits certain drawbacks such as, for example, in the deformation of a ductile rod the magnitude of the
deformation will be a function of that state of the rod which we regard as its initial state.

The theory of finite deformations has been developed more fundamentally abroad in the publications
of Rivlin (see the articles in [4, Vol.1], [5]), Lodge [6], Fredrickson [7], and of Green and Adkins [8],*
These researchers define finite deformation with the relationship¥

1
S =T (€s— ap), (2

where g;) is the metric tensor of a material coordinate system associated with the particles of the material
being deformed at the instant under consideration; aji is gjx in the initial state, when the material has not
yet been subjected to the effect of the stresses. Using this definition of finite deformation and its invariant
characteristics, Rivlin derived the physical coupling equations of rather general form, from which he found
the elastic potentials of Kuhn, Muni, et al. (see [9]) as special cases, these potentials having been proposed
by the cited authors for rubber-like materials. The Rivlin closed system of equations, which he wrote in a
system of material coordinates, and which, as is usual, contained equations of motion, continuity, boundary
conditions, and nonlinear physical equations, makes it possible to formulate boundary-value problems for
materials exhibiting great deformations. Certain of the problems were examined by Rivlin [4, Vol.1]; here
he investigated a number of nonlinear effects, such as the appearance of compressive stresses at the ends,
in the twisting of round cylindrical objects, etc. We should point out that this kind of phenomenon is actually
encountered in rubbers [9] and even in metals (the Poynting effect [3]), although at low deformations the
magnitude of this effect (i.e., the corresponding stress or strain) is insignificant; it diminishes in approxi-
mate proportion to the square of the principal deformation,

Lodge [6] and Fredrickson [7] used definition {2) for finite deformation to investigate the processes
of elastic aftereffect and viscous flow, The rheological equations which they derived provide an explanation,
in particular, of such nonlinear phenomena as the Weissenberg effect (see Weissenberg [10], Freeman and
Weissenberg [10], see also Pollett [11], Ward and Lord [11], Jobling and Roberts [4, Vol, 2], [11], Reiner
{4, Vol.1], [3], which arises in the appearance of normal stresses in a material subject to the deformation
of pure shear. Problems from the theory of finite deformations are also covered in the Prager book [12].

Yet another means of explaining and mathematically describing the effects of tensor nonlinearity (for
example, the Weissenberg effect) was suggested by Oldroyd [13]. Many physical laws employed in rheology,
as indicated earlier, contain derivatives with respect to time, e.g., the derivatives of stresses or the de-
rivatives of strains, with respect to time, An equation of rather general form, describing in particular
the effects of viscous flow and elastic aftereffect, has the form

Pin + hypie = 20 (€35 + Afin), 3

where p{k = Pik + Pdik is the stress deviator; pji is the stress tensor; p is the hydrostatic pressure; & is
the Kronecker delta; ¢y is the strain rate; Ay, Ay, and 9, are the parameters of the material, The dots de-
note differentiation with respect to time. The rheological equation (3) does not differ from the equations for
elastic sols (a Lesersich body) and relaxing gels (a Jeffries body) {3]. The magnitude of the derivative is

a function of whether or not the reckoning system is fixed or whether the coordinate axes translate together
with the fluid particle, or if they additionally are in rotation.

Oldroyd contends that the physical law associating stresses and strains should be independent of some
arbitrary selection of a coordinate system. The only invariant coordinate system is the material (convec-
tion) coordinate system whose axes are associated with the particles of the medium being deformed. The

*Academician L.1.Sedov [see 1. L Sedov, Introduction to the Mechanics of Continuous Media [in Russian],
FM (1962)] contributed significantly to the development of the nonlinear mechanics of continuous media and
the theory of finite deformations in the USSR,

§This definition of finite deformation is not the only one possible (see, for example, the Kutilin book cited
earlier),
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quantities p{k = @p{k/@t and ejx = Peik/Pt are thus convection derivatives associated with the moving

and rotating system of coordinates which is simultaneously being subjected to strains in conjunction with the
material. Let us consider the case of pure shear. Oldroyd derives a nonlinear relationship between the
shear component of the stress tensor pxy and the velocity gradient D. Oldroyd interprets this relationship
as the law of non-Newtonian flow of a viscous fluid.

In establishing the relations between the stresses and strains, without which solution of the various
working problems of mathematical rheology would be impossible, it is frequently useful to employ mechani-
cal models, The latter are assemblies of various elements such as springs, ductile elements (hydraulic
shock absorbers or dampers), dry-friction units, etc., whose individual points are displaced under the ac-
tion of the forces applied to them. Some of the simplest models describing phenomena in actual media,i.e.,
elasticity, viscosity, plasticity, and combinations of these simplest of properties (viscoelasticity, visco-
plasticity, and the behavior of an elastic—plastic material), has been covered in reviews by Reiner [3, 4,
Vol, 1]. A particularly detailed study for the method of mechanical models is found in [14], where the chap-
ters written by Persoz provide a description, in addition to the traditional, of such new models as well.
These include, for example, the Képes model in which the plastic deformation is directly proportional to
the applied stress. A model with a regulator is useful to describe phenomena such as dilatation (an eleva-
tion in the effective viscosity with an increase in the velocity gradient). The introduction of a limiter ele-
ment makes possible the modeling of such phenomena as hardening under plastic deformation.*

The use of models with a limited number of elements usually results in laws of deformation in time
(or in laws of variations in stress), which are poorly described by the curves observed for actual materials.
This naturally results in a trend toward further complication of the mechanical models. Thus, for example,
Alfrei [15] extensively uses the so-called model C to describe the linear properties of high polymers; this
model is a series-connected combination of Hooke and Newtonian elements, in addition to a number of Kelvin
elements. For C models use is frequently made of the concept of the distribution (spectrum) of the times
of elastic aftereffect or, more exactly, the distribution of compliances with respect to the times of elastic
aftereffect [15-17]. If the set of Kelvin elements is finite, we have a line spectrum, We also use the con-
cepts of continuous spectra, when the models contain an infinite multiplicity of elements which make up
these models. In addition to the generalized Kelvin model, the generalized Maxwell model [15-17] has also
gained widespread acceptance, and it contains a finite or infinite number of Maxwell elements, connected in
parallel.

The generalized Kelvin and Maxwell models correspond to linear equations describing the properties
of the material. Similar constructions for nonlinear bodies were achieved by the Japanese authors Sawaragi
and Tokumaru [18], Sawaragi, Taniguchi, and Furuichi [18], who in the cited references investigated models
which, in addition to simple Hooke and Newtonian elements, also contain finite or infinite sets of three-ele-
ment links; an individual link involves the parallel connection of a spring, shock absorber, and dry-friction
unit. An assembly of such links ig equivalent to the introduction of functions of compliance distribution with
respect to the times of elastic aftereffect and the yield point. Sawaragi and Tokumaru [19] use a model of
element groups connected in parallel, Each group is an infinite set of four-elements links connected in paral-
lel, with each link made up of a series-connected Newtonian element and the three-element assembly re-
ferred to in the above~cited reference [18]. Sawaragi and Fukuda [19] use a model in the form of a parallel-
connected set of groups, each of which is made up of an infinite number of links connected in parallel, with
each link made up of a Hooke element connected in series with another Hooke element, with the last con-
nected in parallel with the dry-friction unit. The Japanese models describe, in particular, such processes
as the fatigue of elastomers, and their significant drawhack is the excessive complexity.

The construction of a mechanical model for an actual material is the first step in the solution of the
corresponding problems of phenomenological rheology, which deal with the various processes of deforma-
tion for such a material, as encountered in actual practice. In addition this step is entirely unnecessary;
the physical (rheological) equations needed for the solution of the working problems can be compiled without
the use of mechanical models, However, the construction of mechanical models is usually of some advan-
tage; by analyzing a model we can prove, for example, the noncontradictory nature of the equations which we
are using, and also the corresponding laws of thermodynamics, etc. A model made up of linear elements,

* A model with destruction elements is proposed in the following paper: M. P. Volarovich, N. I. Gamayunov,
and N, N, Sokolov, Kolloid. Zh., ﬁ’ No. 4 (1966).
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i.e., of springs and shock absorbers, in terms of its mechanical properties is equivalent to a medium sub-
ject to a linear differential equation which, in operator form, is written as follows [3, 14, 20], Leaderman
[4, Vol, 2], Lee [5, 20]:

f==m . i=n .
% dt j dl.

D' = b, — o, (4
d ' df dd i

=

where g = 1, while aj and bj are the parameters of the material.

Differential equations such as (4) can be rewritten to a form containing the integral Volterra operator.
We can treat the kernel of the resulting linear Volterra integral equation as entirely independent of the op-
erator equation (4) or independent of the corresponding rheological model. Here we retain only the general
Boltzmann— Volterra rule of linear superposition according to which deformation resulting from the stresses
Aoy + Aoy is equal to the sum of the deformations resulting from Ao, and Ac,,.

The methods to describe the rheological properties of linear viscoelastic materials with mechanical
models, operator equations such as (4) and Volterra linear integral equations are the most general, and
they are suitable for processes in which the stresses or strains vary arbitrarily. To determine the param-
eters of the model or the parameters of the operator equations, in particular, the integral equations, we
need other methods of description, which may, perhaps, not distinguish themselves by their generality, but
which are therefore more closely associated with a certain type of experiment, performed on an actual
material. Among the latter we include those methods based on the determination of the creep function from
experiments on creep, and on the determination of the relaxation functions from experiments on the relaxa-
tion of stresses, dynamic compliance I*, or the dynamic modulus E*. These last quantities are determined
from experiments performed at variable stresses ¢ and strains €, with ¢ and & varying with time accord-
ing to a sinusoidal law. With viscoelastic materials the deformation in the general case lags in phase from
the applied stress.

The quantities I* and E* are treated as complex; this treatment is associated with the representation
of 0 and ¢ and, consequently, of I* and E* in the form of vector diagrams on a complex plane as is fre-
quently done in the case of harmonic oscillations. Completely to define the viscoelactic properties, we
must know of the compliance It} = & (t)/o in the creep experiment with constant ¢ with time t ranging from
zero to « or with the relaxation modulus E(t) = o(t)/¢ in the experiment on relaxation at constant deforma-
tion for the same range of time t from zero to «, or with the complex compliance as a function of the an-
gular frequency w (for all possible variations in frequency from w =0 to w = «) I¥(w) = = (t)/o(t), or for the
complex modulus E*(w) = o(t)/e(t) at frequencies in the interval [0, =).

As was mentioned earlier, in the determination of I*(w) and E*(w), £ and ¢ are sinusoidal functions
of t. These functions are complex quantities and contain real and imaginary parts. To determine the
viscoelastic properties of a material, it is sufficient to know one of these four functions of w (moreover,
we must have the constants which determine the elasticity of a material and its ductility, if elastic and vis-
cous strains arise in the deformation of the material). For example, if we know the imaginary part of the
complex modulus of elasticity over the entire range of frequencies from 0 to «, from these data we can
also determine the real part of E* as a function of w [16].

Each of the above-enumerated methods is convenient for the solution of a specific range of problems.
For greater universality of the methods of phenomenological rheology in the case of a linear viscoelastic
material, here we must have at our disposal methods for the transition from one method of describing the
properties of a material to another method. The most complete review of such methods is found in [16].
The figure shows a diagram of the methods to describe the linear viscoelastic properties of materials and
the methods of changing from one to the other, this diagram having been borrowed from the cited mono-
graph (see also, Gross [11]). Many of the methods for the transition from one description method for the
properties of a linear viscoelastic material to another are associated with extensive mathematical difficul-
ties. In part these difficulties have not yet been overcome; the arrows in the diagram indicating the transi-
tion from one description (indicated by a rectangle) to another therefore do not connect all of the rectangles.

In certain cases, for the transition from one description to another, we use approximate methods (see
[16], L.eaderman [4, Vol. 2]}, e.g., to calculate the relaxation spectrum from the function E(t) of the relaxation

tChapter III of Yu. N, Rabotnov's monograph [Creep of Structural Elements [in Russian], Nauka (1966)] is de-
voted to the behavior of linear viscoelastic media. A large portion of this book is devoted to the creep of
metals at high temperatures, and to an examination of the corresponding phenomenological problems.
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modulus. In certain cases, existing exact methods of transition are inconvenient for practical calculations;
despite the existence of some exact solution, we therefore also use approximate calculations. For example,
we know of an exact solution for the problem of determining the relaxation spectrum from dynamic data
(from the complex modulus of elasticity, from its real and imaginary part as functions of the angular ve-
locity), as derived by Gross. However, for practical calculations this is an inconvenient solution, since for
the calculations of the above-enumerated dynamic functions they must be specified in the form of analytical
functions. In actual practice, we therefore proceed in the following fashion: from the experimental data we
usually derive the curves for the dynamic modulus and for the modulus of the losses as a function of w,
with the analytical equations describing these functions, as a rule, unknown. Here it is more convenient to
use approximate methods (see, for example, Leaderman [4, Vol, 2]).*

The above-enumerated theories assume that the medium exhibits constant properties that are inde-
pendent of time and that the effects of aging, i.e., the time variations of the mechanical properties of the
material, can be neglected. For many materials (in particular, for concretes, certain types of polymer
materials, and disperse systems) aging is significant. Certain researchers therefore attemptedto generalize
the theories of viscoelasticity for media whose properties are a function of their age.f One such attempt
is made by Bismuth and Saunier in [21, part 2], who introduced a term containing time in explicit form into
an operator equation such as (4).

Most of the materials encountered by researchers in the field of rheology are nonlinear in nature.
Many materials exhibit a linear elastic, viscous, or viscoelastic behavior in the region of low stresses,
but behave as nonlinear materials at high stresses. A certain boundary exists in this case to separate the
regions of linear and nonlinear behavior. The linear viscoelastic materials are referred to by L.eaderman
[22]% as materials subject to the linear Boltzmann—Volterra principle of superposition, and their deforma-
tion properties are described by linear Volterra integral equations with different kernels. It is Lee's opin-
ion [5, 20] that linear and nonlinear materials are most easily distinguished in the following manner. If
similar forces P; = CjP(t) acts on completely identical items at similar points (the shape of the item is ir-
relevant), and these forces are oriented identically with respect to the axes of this item, the deformations
of the linear material vary with time t in proportion to the forces Pj, while for an object made of 2 nonlinear
material the deformations will not be proportional to Pj. .

It is sometimes incorrectly assumed that a linear material exhibits a linear o —¢ diagram. This is
an entirely unacceptable criterion with regard to viscoelastic materials. The very simplest linear material
described by the mechanical Maxwell model will exhibit a nonlinear diagram (see, for example, Alfrei [15]).

Reiner [3] distinguishes physical and tensor nonlinearity. Physical nonlinearity is evidenced by the
fact that scalar quantities characterizing stresses, deformations, and rates of deformation (for example,
their invariance), are associated with others by nonlinear relationships which can be investigated, for ex-
ample, in the case of uniform deformation patterns (simple tension, simple shear, etc.). For materials
exhibiting nonlinear viscoelastic properties (such materials include, in particular, many of the high poly-
mers) the creep strains for specified values of t and for various values of ¢, for example, grow in propor-
tion to o1, where n > 1 (Staverman and Schwarzl [23]), or in proportion to sh(c/om), where n and o are
the parameters of the material (Findley [24]), etck*

Consideration of the simultaneous elasticity and viscosity effects in solving problems of rheology for
a physically nonlinear material generally involves considerable mathematical difficulties. Fortunately, for
most cases of importance under practical conditions, one of the components of deformation — elasticity, vis-
cosity, plasticity, or the deformation of elastic aftereffect — usually predominantes over the others.ft

*In the USSR, a number of investigations devoted to the methods of describing linear viscoelastic properties
of materials and to find methods of making the transition from one method to another, have been performed
by Shermergor, Prikl,Mekhan. i Tekh. Fiz., No. 1 (1960); Fizika i Metallovedenie, 9, No 2 (1960).

tSee, for example, N. Kh. Arutyunyan's book: Certain Problems in Creep Theory [in Russian], Gostekhteo-
retizdat (1952), as well as the above-cited Rabotnov monograph.

1 The cited articles make up the report of the Committee on Terminology of the USA Society of Rheology.
**A gurvey of Soviet and foreign papers devoted, in particular, to an examination of the theories of non-
linear viscoelasticity can be found in the Malinin report published as The Transactions of the Second All-
Union Congress on Theoretical and Applied Mechanics, No. 3, Mechanics of Solids [in Russian] (Moscow,
1964), Nauka (1966).

t+See M. P. Volarovich, the footnote at the beginning of the article.
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In calculating the flow processes it is therefore sufficient to account only for that one of these components,
neglecting all the others. Thus, in examining the laws of flow in disperse systems, solutions, and melts of
high polymers we usually neglect the elastic strains, as well as the deformations of elastic aftereffects as
small in comparison with the irreversible effects — viscosity or plasticity strains. The effect of physical
nonlinearity for viscous and plastic materials becomes evident in the fact that the flow diagram — the strain
rate as a function of the acting stress — is a curve. In investigating viscosity our attention is basically de-
voted to the viscous behavior of the material in the case of shear strains, while the flow diagram (the con-
sistency curve [1, 3]) is the curve showing the shear rate v as the shear stress 7. In phenomenological
and structural rheology, the effective viscosity is of great significance, and this quantity is defined by the
equation*

T = NeitYs (5)

with the quantity 5 in the general case being a function of the shearing stresses 7. For Newtonian fluids
neff = const. This is the way liquid low-molecular substances which contain no suspended macroscopic
particles behave when the shear rates range from y =0 to the high values of v at which turbulent flow be-
gins. At low concentrations for the solid-phase particles in the liquid, a disperse system continues to be-
have as a true Newtonian fluid (see, for example, the well-known work of Einstein). However, if the con-
centration arises above some critical level, we find effects of anomalous viscosity; here the effective vis-
cosity is a function of the shearing stresses 74 For various disperse systems, under a variety of condi-
tions, the effective viscosity neff may diminish or increase with a rise in 7. Scott-Blair, in his monographs
[1], analyzes in detail the factors leading to a change in negp; these are closely associated with the change in
the structure of the systems during the flow process. In this connection, the effects of anomalous viscosity
are of great interest for structural rheology; some of these effects have been described by Richardson [25].

The effect of raising the effective viscosity with an increase in the shear rate in the case of disperse
systems and high polymers is encountered quite rarely in practice. Conversely, we very frequently find the
inverse phenomenon in which the effective viscosity is reduced with a rise in 7. If the solid-phase concen-
trations in suspensions and in colloidal solutions or in polymer solutions are not too great, and if the tem-
peratures are not too low (this latter circumstance is particularly important in examining flows of polymer
melts) the system begins to flow at negligible stresses of 7 — 0. Consequently, the system is a non-New-
tonian fluid: the limit shearing stress is virtually equal to zero, while negf is a variable quantity. For solu-
tion of the problems of phenomenoclogical rheology it is important to know, for this case, the law governing
the relationship between the stresses T and the strain rate v. This law must satisfy the obvious but contra-
dictory requirement of, first of all, corresponding to the experimental data with a sufficiently high degree
of accuracy, and secondly, it must be as simple as possible, since the range of problems capable of solution
with contemporary mathematics and cybernetics facilities is markedly reduced as the rheological law is
made increasingly complicated.

To solve the problems of flows for melts and solutions of polymers, rather extensive use is made of
the Ostwald—De Vale "power law" [26-29]

v =Ky, (6)

where K and n are the parameters of the material; the Prandtl rheological equation [26, 28, 29]

1 = AArsh —VC_ ()

(A and C are parameters) and the Eyring— Powell equation {26-29], whose left-hand member, as in (6) and
(7), is 7, and its right-hand member is the sum of the right-hand members of Egs. (6) and (7).

As the temperature is reduced, or as the solid-phase concentration in disperse systems or solutions
of high polymers is increased, the effects of anomalous viscosity become increasingly evident.y Under cer-
tain conditions, the effective viscosity neff for certain critical stresses varies so rapidly*#* and in such a

*See P. A.Rebinder and N. V. Mikhailov, Kolloid. Zh., 17, No. 2 (1955).

t The effects of anomalous viscosity for concentrated disperse systems are discussed by the authors in a
survey article [Inzh.-Fiz. Zh., 10, No. 6 (1966)].

i See the authors' survey [Inzh.-Fiz. Zh., 10, No. 6 (1966)].

**P. A. Rebinder describes the experiments in which, in the shear of clay structures, a drop in effective vis-
cosity by a factor of 107 and more was observed (P. A. Rebinder, Physicomechanical Mechanics [in Russian],
Znanie (1958); also see his comments to the translation of this book [4, Vol.1]).
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Fig.1. Diagram illustrating the methods of describ-
ing linear viscoelastic properties and transitions
from one to the other; I) the complex compliance
function I*(w); II) the complex modulus function EX{w);
11l) the creep function ¥(); IV) the relaxation function
B(t); V) the distribution function for the aftereffect
times; VI) the distribution function for the relaxation

narrow range of values for 7 that for a phenom-
enological description of the processes of the
flow of such media it is more convenient to use
the nonanalytical relationships than relation-
ships such as (6) and (7), and those relation-
ships similar to these, for which Noff is a smooth
function of the stresses 7. The value of the non-
analytical functions in rheology has been stressed
in the surveys by Prager (4, Vol.1], W. Prager
(301).

As an example of a nonanalytical relation-
ship used extensively in contemporary rheology
we can cite the Bingham flow law (see [1, 3, 30-
32}, a Bingham body is a degenerate Shvedov
body, see [3]), which in the one-dimensional case
is written mathematically in the form#

y=0 (z<9),

. (8)
T=20 + To1'Y (T>6)’

times; a) the Stieltjes integral; b) an algebraic inver-
sion formula in complex variables; ¢) the Fourier
transform; d) the Laplace transform; e) algebraic
equations; f) Volterra intergral equations; g) integral
transformations.

where 6 is the yield point of the system (the
limit shearing stress); n, is the plastic vis-

p
cosity. The Bingham flow law provides a good
description of the flow of various disperse sys-
tems such as, for example, paints ([3, 31, 32],
Bantoft [13]), food products ([1, 3], Steiner [13]),
peat [1, 3], and similar materials.

From among the nonanalytical relationships which make provision for the rise in the viscosity resis-
tance with an increase in the velocity gradient, let us recall the Casson equation

vy=0 [(t<K3),

VT =k KV 7 (K )

(K, and K, are the parameters of the material), which finds application to describe the flow of typography
inks (Casson [13], Bantoft [13]), and of blood (Merril, Margetts, Cokelet, Gilliland [21, part 4], Copley [33]).

As the concentration of the solids in the disperse system increases, the yield point 6 of the system
(or the parameter K, in (9)) usually increases more rapidly with the concentration ¢ than the plastic vis-
cosity np] (as in the case of the parameter K, in (9)). Thus, with high c¢ the contribution of the second term
to the overall magnitude of 7 in (8) and (9) is frequently negligibly small in comparison with the yield point
g. Relationships such as (8) and (9} in this case degencrate info relationships of ideal plasticity; Van lter~
son [34] stressed the possibility of using the methods of the theory of plasticity to describe the processes
of flow in concentration disperse systems (soils, bricks, ceramics, etc.). These possibilities have been
adequately exploited for disperse systems, and the theory of plasticity has been developed primarily for
processes of deformation and metal flow. The contemporary theory of metal plasticity (primarily the mathe-
matical theory) has been the subject of extensive literature. To familiarize the reader with the plastic prop-
erties of metals and of certain nonmetal materials, we can recommend the basic work of Nadai [35], inwhich
many of the aspects of rheology have been covered.

Plasticity theory makes no provision for the relationship between plastic deformations and fime, since
this relationship is insubstantial for most metals, as well as for many nonmetallic crystalline and amor-
phous solids at low temperatures. However, at high temperatures, the effect of time on metal deformation
becomes quite substantial. Under these conditions, the metal will creep with the passage of time under the
action of stresses. Creep theory has been developed to describe the creep of metals: the theory of aging,
of flow, of heredity (the above-mentioned descriptions with the aid of mechanical models, operator equations,
and Volterra integral equations — these are all particular examples of the application of the concepts from

+The general case of a three-dimensional stressed state is discussed in the Volarovich and Gutkin article
[Zh. Tekh. Fiz., 16, No.3 (1946)]. Generalization to the three-dimensional case of relationship (7) leads to
the system of equations derived » - Hencky and by Il'yushin.
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the theory of heredity) and the theory of hardening ([35, Vol. 2], [36]).* While the best results for polymer
materials are given by the theory of heredity from among the above-named theories, for metals the most
satisfactory results are found for the equations from the theory of hardening, based on the utilization of
concepts to the effect that a structural change takes place in the metal during the process of metal creep,
leading to the hardening of the material and to a reduction in the creep rate [35, 36]. In simplest form, the
equation of state from the theory of hardening associates the rate of deformation with the stress and with
the deformation that has been accumulated.

The tensor nonlinearity (as well as the geometric nonlinearity) becomes evident in the fact that the
principal axes of the stress tensor do not coincide with the principal axes of the strain tensor, or of the de-
formation rate [3]. This noncoincidence is made evident in the above-cited effects of Poynting and Weissen-
berg (see alsc Markovitz [21, part 1], Reiner [21, part 1], Ginn, Metzner [21, part 2]) and in other phenom-
ena, in particular, the effect of the expansion in the jet diameter on discharge of a solution or of a polymer
melt from a tube (see Shertzer, Metzner {21, part 2]). Some authors refer to this last phenomenon as the
Barus effect, using the name of the researcher who first described the phenomenon during the nineties of
the last century (see Lodge [33]).

The geometric and tensor nonlinear effects were found in the most varied of materials:f metals [3],
polymer systems, and air ([3], Reiner [21, part 1]). On the basis of available data we are, as yet, unable
to express an opinion as to whether or not these effects in such diverse systems are the result of a single
factor or whether various mechanisms are operative in different cases, In a number of cases, the geometric
and tensor nonlinear effects can be predicted on the basis of physically nonlinear relationships which make
use of the concepts of finite deformations different from the Cauchy deformations (see, for example, [8]).
The Poynting effect in metals was satisfactorily explained by Reiner [3] on the basis of the tensor nonlinear
elasticity law which he proposed in conjunction with Hanin, and this law has the form

3
i = Koby; + Kigyj + 2 Keeiotar (10)
a=1
where 0ij is the component of the stress tensor, and dij is the Kronecker delta. In the simplest K;, Ky, and
K, are constants for nonlinear materials and they may be scalar functions of the deformation invariants.
The right-hand part of (10) is a second-degree polynominal with respect to the component of the strain ten-
sor; Reiner and Hanin demonstrated (see [3]) that relationships such as (10) for physically, geometrically,
and tensor nonlinear materials — as complex as you please — contain no terms higher than the second degree
for eij.

To explain the effects of tensor nonlinearity in fluids, Reiner [3] proposes the use of (10) in which €ij
denotes not only the deformation of the elastic material, but the rates of deformation as well. However, this
type of relationship leads to a different distribution for the normal stresses (for example, in the clearance
between two disks, of which one is fixed, while the second rotates) than is encountered in the experiments
associated with the Weissenberg effect described in the above-cited projects in which rotation equipment
was used.

De Witt, and then Gieseckus (cited in [3]) explained the Weissenberg effect and similar nponlinear ef-
fects on the basis of their proposed relationships which made provision for the stress tensor as a function
not only of the symmetrical portion of the velocity gradient (i.e., of the strain rate), but also as a function
of its nonsymmetrical part (i.e., the velocity of rotation). The relationships proposed by De Witt and Gie-
seckus are generalizations, for a ductile material, of the physical equations of the moment theory of elas-
ticity developed by the Kossero brothers in the tenth century.

Phenomenological rheology is not limited to the determination of the laws relating stresses and de-
formations for the materials being investigated. In and of themselves, these laws are of limited value. But
they are completely necessary to examine the various problems of deformation and flow in the continuous
media which they describe. The solution of the boundary-value problems for deformation and flow of rheo-
logical media form the subject matter for one of the most imporant branches of rheology which, in analogy
with the mathematical theory of elasticity and the mathematical theory of plasticity, may be referred to as

*See the Rabotnov monograph entitled: Creep of Structural Elements [in Russian], Nauka (1966).
tOne of the authors of this survey found the Poynting effect in a solid polymer — polymethyl methacrylate
[Mekhan. Polimerov, No.5 (1566).
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mathematical rheology. Because of the limited scope of this survey, we have no opportunity here to under-
take a detailed study of the contemporary methods of mathematical rheology. We will therefore limit our-
selves to an enumeration of the basic literature containing such information.

Methods for the solution of some of the simplest problems of linear viscoelasticity (for example, prob-
lems of beams) can be found in the Alfrei monograph [15], as well as in the article by Baltrukonis and Vai-
shnav [21, part 2]. An analysis of the methods for the solution of quasistatic problems of linear viscoelas-
ticity, when the stresses which arise in a deformed material, due to inertial forces, are negligibly small in
comparison with the stresses due to external static forces, as well as an analysis of dynamic problems, is
found in the book by Blend [20] and the survey article by Lee [5, 20]. The book by Nowacki [37] is devoted
to these same problems.

The main difficulty in solving the boundary-value problems of viscoelasticity is associated with the
fact that the physical equations describing the behavior of a material include time. In the West the generally
accepted methods of solving the problems of linear viscoelasticity are based on the application of such in~
tegral transformations as the Laplace transform, for example, to the overall system of equations describing
the state of a material. With the aid of the integral transformation the problem reduces to the correspond-
ing elasticity problem and the inversion of the elasticity solution yields the time variation in the picture of
the stressed—strained state. Operator methods have been developed in the USSR for the solution of similar
problems, and these are based on the use of the so-called Volterra principle, according to which the elas-
ticity solution is suitable even for the corresponding viscoelasticity problem; it is only in the final result
that the constant elasticity parameters are replaced by viscoelasticity integral operators.*x

Some problems with regard to the propagation of viscoelasticity waves are covered in the books by
Kol'skii [38] and Davis {39],t as well as in the articles by Valanis [21, part 2], Arnold, Lee, and Panarelli
[21, part 2].

The development of the theory of viscoelasticity was motivated in great part by the extensive use of
plastics as structural materials. A number of interesting problems arose in connection with the develop-
ment of solid-propellant rocket engines (see, for example, [40], Williams [41], Klosner and Sadre [21, part
2], and Moghe and Hsiao [21, part 2]).

There is no need here to touch upon the problems of the viscous flow of Newtonian fluids, since these
problems, as noted earlier, are the subject matter of hydrodynamics. The mathematical rheology of non-
Newtonian fluids was developed primarily in connection with the progress in the technology of processing
various rheological media: polymer materials and disperse systems. In the article by Gore and McKelveys
[4, Vol. 3] and in [26, 27, 29, 42] we find discussions of the problems of flow for certain non-Newtonian fluids
(primarily of the Ostwald—DeVale medium, subject to the "power law” (6) of flow). A survey of the solutions
for the problems of flow of non-Newtonian fluids in viscosimeters of various design is given by Oka [4, Vol.
3]. A number of problems in nonlinear rheology are covered in the Fredrickson {[7] and Wilkinson [28]
monographs, as well as in the article by Gerrard and Philippoff [21, part 2].

In [43] problems concerning the flow of viscoplastic materials are discussed. In recent years the
theory of flow in these materials and problems arising from it have been developed intensively in the USSR.}

*See the Rabotnov monograph entitled: Creep of Structural Elements [in Russian], Nauka (1966); see also,
A.R.Rczhanitsyn, The Theory of Creep [in Russian], Stroiizdat, Moscow (1968).

tSee also Kh. A.Rakhmatulin and Yu. A. Dem'yanov, Strength under Intensive Short-Term Loads [in Russian],
FM (1961).

1The following books are devoted to the hydrodynamics of viscoplastic fluids in the petroleum industry: R.1I.
Shishchenko, The Hydraulics of Clay Solutions [in Russian], Aznefteizdat (1951); A.Kh. Mirzadzhanzade, Prob-
lems in the Hydrodynamics of Viscoplastic and Viscous Fluids in the Petroleum Industry [in Russian], Aznef-
teizdat (1959). Certain problems in the flow of viscoplastic peat systems are covered in the book by N. N,
Kulakov [Introduction to the Physics of Peat [in Russian], Gosénergoizdat (1947)1. A number of books by
Soviet authors, devoted to a theoretical examination of the problems in the flow of viscoplastic materials,

is cited in the Volarovich survey [Kolloid. Zh., 16, No.3 (1954)]. In recent years, in the area of the theory

of the flow of viscoplastic materials successful work is being done by Gutkin [Kolloid Zh., 17, No. 6 (1955);

19, No. 1 (1957); 23, No. 3 (1961); 24, No.1 (1962)], by Myasnikov and Mosolov [Prikl. Mekhan. i Tekh. Fiz.,
Nos.2 and 5 (1961); No.4 (1962); Prikl. Matem. i Mekhan., 29, No. 3 (1965); 30, No.4 (1966); 31, No. 3 (1967)].
Extensive research intothe rheological properties (in particular, the viscoplastic properties) of clay suspensions
has been carried outby Academician Ovcharenko, and his co-workers (see F. D. Ovcharenko, N. N, Kruglitskii, S. P.
Nichiporenko, and E. G. Agabal'yants, Mountain Leather in Drilling [in Russian], Tekhnika, Kiev (1968), and others).
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The problem of the propagation of a stress wave in an elastic —viscoplastic material whose mechani-
cal model is a combination of Hooke, Newtonian, and St. Venant elements connected in parallel is examined
in the article by Cristesku and Predeleanu |21, part 3].

Extensive literature [44-50]t is devoted to the solutions of problems from the mathematical theory
of plasticity; unfortunately, the use of these solutions is limited virtually in its entirety to metallic systems,

A solution is given in the Phillips and Tsan Sun Chang article [21, part 1] for the problem of the dis~
tribution of stresses and strains in a hardening medium in an underground explosion (for example, a nuclear
explosion). ‘

In the above-cited articles on the hydrodynamics of non-Newtonian fluids it is primarily laminar flows
with which we are concerned. Engineers frequently deal with the turbulent flow of non-Newtonian fluids in
actual practice, and for these, for example, in flow through tubes, the relationships between flow rate and
pressure difference will differ from the analogous relationships in the case of a laminar regime. A special
chapter in [29] is devoted to the problems of turbulent flow for a laminar fluid. As is well known, the exis-
tence of a laminar or turbulent flow regime depends on the Reynolds number Re for the given flow; for Re
< Re* (Re* is the critical Reynolds number) the flow regime is laminar; for Re > Re* the regime is turbu-
lent, The magnitude of the Re number also determines the frictional losses for the flow of a fluid in 2 given
channel.

For anomalous fluids the Reynolds number cannot be determined in the usual fashion, i.e., as in the
case for viscous fluids, since the effective viscosity of the anomalous fluid is a variable quantity that is a
function of the velocity gradient, Determinations of the Reynolds numbers and other similar criteria
are given in [29] for various anomalous fluids subject to the "power law" of Ostwald —DeVale flow, subject
to the Bingham law, etc,}

In connection with the consideration of the problem of critical Reynolds numbers, it is appropriate at
this point to refer to the two effects observed in the flow of viscous and viscoelastic fluids. The so-called
Toms effect (see Toms [10], Oldroyd [10], and Fabula [21, part 3]) involves the fact that insignificant ad-
ditions of high-molecular substances to the viscous fluid for example, to water) leads to an extremely great
increase in the critical Reynolds number Re*. Thus, for example, Kelley and Brodnyan {21, part 2] observed
an increase in Re* from 2000 to ~7000 in this case. Simultaneously with the increase in Re* there is a
pronounced drop in the loss of dynamic head. No satisfactory physical explanation for the Toms effect has
apparently yet been found, **

The second effect (some researchers refer to it as the effect of "hard turbulence™) shows up in the
discharge of polymer melts from tubes, nozzles, dies, etc.; it is occasionally observed in the extrusion of
polymers. At high flow velocities, the surfaces of the products occasionally show signs of rippling, wavi-
ness, and sharkskin defects, etc. (see Benbow, Brown, and Howells [30]). This effect is associated with the
fact that the polymer melt exhibits substantial elasticity relative to the shearing strains, and in the case of
high flow velocities, when the potential energy of deformation is rather great, self-oscillations arise within
the material, leading to the appearance of surface defects, t+

tSee also the books by the Soviet authors: V., V, Sokolovskii, The Theory of Plasticity [in Russian], GTTI
(1952); L. M. Kachanov, The Fundamentals of the Theory of Plasticity {in Russian], GTTI (1958); D. D, Ivlev,
The Theory of Ideal Plagticity [in Russian], Nauka (19686).

tIn the above-cited monograph, Shishchenko determines the generalized Reynolds number from the same
formula as for a viscous fluid; however, in the place of ordinary viscosity, use is made of the effective vis-
cosity in this relationship. i

*¥In the USSR the Toms effect has been studied persistently by Barenblatt and his co-workers [see, for
example, Prikl. Mekhan,i Tekh. Fiz., No.3 (1965); No.5 (1965)], as well as in the articles by f}l’perin and
Smol'skii, with their co-workers [see Inzh.-Fiz. Zh., No. 8 (1964); 10, No,2 (1966); Izv. AN BSSR, Ser. Fiz.-
Tekh, Nauk, Nos.2 and 3 (1965)]. A patent was granted to El'perin for a method of reducing drag in tubes and
channels (USSR Patent No. 169955, effective as of December 6, 1954).,

T1This effect was studied by Vinogradov, Malkin,and Leonov [Dokl, Akad, Nauk SSSR, 151, No.2 (1963); Kol-
loid—Z.u.Z. Polymere, 191, No.1 (1963)]. They demonstrated that the appearance of the oscillations asso-
ciated with the effect of "hard turbulence" ig governed by the magnitude of the singular criterion which the
anthors refer to as the elastic Reynolds number and which represents the measure of the ratio between the
viscosity forces and the elasticity forces.
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A number of specific problems in the hydrodynamics of non-Newtonian fluids arises in connection with
the problems of their boundary layer. *

In conclusion of this survey, we must cite the Ziegler book [51], This book contains an interesting
attempt to provide a specific completed formulation to the phenomenological approach to the problems of
rheology. In particular, it contains a unique discussion of the principles of the thermodynamics of irrever-
sible processes, attempts to validate these, in addition to a systematic demonstration of the importance of
applying these principles to the description of media with dissipation,
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